

cellSens **常用分析功能** 操作手册

奥林巴斯(北京)销售服务有限公司

生命科学部 应用支持课

http://www.olympus-lifescience.com.cn/zh/

2019.01 Ver. 2.2

本手册使用 cellSens 安装光盘中"Product family cellSens\ Example images"目录下的图像作为示例,如无法获取请与奥林巴 斯相关人员联系索取图像文件。

注意: 在您对任何图像做任何处理分析之前,

强烈建议您备份原始图像!

图像备份方法:选中需备份图像,点击菜单栏"图像>> 复制" (或按快捷键"Ctrl+2")。

一、共定位分析4	
二、比例分析9) –
三、消卷积处理14	-
(1) 二维消卷积17	5-
(2) 最近邻18	; -
(3) Wiener 滤镜19) –
四、记波器(Kymograph)22	2 -
五、对象计数(手动)29) –
六、宏管理器(Macro Manager)31	

一、共定位分析

注意: 待测图像需包含至少2个荧光通道。

1. 打开 Example images\Unmixing\HeLa_original.tif。

2. 打开"视图>> 工具窗口>> 调节显示",点击"默认值"键,点击"应用"。

	调节显示		? Ŧ X
	直方图		· ·
	🔍 16 位 🔹	3. 🖉 📙 😂	
	500 1000	1500 2000 25	00 3000
	● ● ●		▶
	與小山里; 134		取入道: - 3156
	平均亮度: 像素总数:	495.70 452,330	
2x	○固定換算 左:	右:	
\sim	188	2930	
	◎ 自动适配		
	左: 0.1 🚔 %	右: 0.1 📥 %	
	■所有帧的直方图	•	/
	■排除直方图尖峰	K	
$\bigcirc \bigcirc \bigcirc \bigcirc$	应用	默认值	

3. 打开"视图》〉工具栏〉〉生命科学应用",点击"共定位"图标。

- 打开共定位测量窗口,点击窗口左上方"通道"下拉菜单,分别选取待分析 的两个通道。左侧散点图显示原图中每个像素的荧光强度分布情况,散点图 越集中在斜率为1对角线上说明两个通道共定位可能性越高。
- 5. 为了简化流程,建议点击右下角默认值,会对相应选项设定默认值进行计算 共定位状态。白色矩形框是阈值框,其代表包含两个待分析通道荧光强度中 间值像素点的位置,可根据荧光信号强度选取,其大小和位置可以在图中任 意框选设置。

					<u> </u>
散点图			预览		
通道 1: GF	P		🞝 - 🔍 🕀 👰 🔀		
通道 2: YF	Р	•		1	
3155			1000		2
				1. S.	R
2367					
1578					
	Construction of the		AND		
789					
SPE SPE					
0 YFP					
I				-	
0	215 430	645 859			
	اً حد/ حدم علم عند (محد 1			-/.12	
应用于	书士计算共定位		☆⊠域 斜举力 1 的自	1线	
C C C C C C C C C C C C C C C C C C C	言息的像素点	_			
● 所有100(A)	HIGH BINNS STAT		10. 2021个11月		
◎ 所有帧 (&) Ⅰ		×	域: 整个帧		
◎ 所有帧 (&) ◎ 选中的帧 (S)		×	域: 【整个帧	`	
 ● 所有帧 (&) ● 选中的帧 (S) 选维器 		×	☆: <u> 整个帧</u>	`	
● 所有顿 (4) ● 选中的帧 (5) 选维器	*D	X	□ 整个型前		
 ● 所有顿 (4) ● 选中的帧 (2) 送维器 	^a (D)	X	政: <u>整</u>个叩 负		
 所有帧 (2) 选中的帧 (2) 选维器 模式 	90 (D)	区	咳: <u>整个响</u> 艮(当前帧,所有感兴趣区)		
 所有帧 (a) 送中的帧 (S) 送维器 模式 ● 矩形 	⁸ (D)	は、「「」の「」の「」の「」の「」の「」の「」の「」の「」の「」の「」の「」の「」の	咳: <u>整个帧</u> 艮(当前帧,所有感兴趣区) 数	结果	山北注
 所有帧 (2) 送中的帧 (2) 送维器 模式 ● 矩形 ● 減価 	⁸ (D)	区 (注) (注) (注) (注) (注) (注) (注) (注) (注) (注)	 ▼ ▲ 2 个帧 ■ 2 代 前帧,所有感兴趣区) ■ 3 成 ■ 3 成 ■ 6 成 	结果 0.906	批注
 所有帧 (2) 送中的帧 (2) 送维器 模式 ● 矩形 ● 阈值 使用季度。 		区 (注) (注) (注) (注) (注) (注) (注) (注) (注) (注)	 	结果 0.906 0.989	北注
 所有帧 (2) 送中的帧 (2) 送维器 模式 ● 矩形 ● 阈值 使用季度: 	⁹ 0	区 (本) (本) (本) (本) (本) (本) (本) (本) (本) (本)	 	结果 0.906 0.989 0.311	」 批注
 所有帧 (2) 送中的帧 (2) 送维器 模式 ● 矩形 ● 阈值 使用季度: 	^g 回 (A 佐上)	区 (本) (本) (本) (本) (本) (本) (本) (本) (本) (本)	 軟: 整个帧 R(当前帧,所有感兴趣区) 数 earson 相关系数 R(r): !叠系数 R: !叠系数 k1: :叠系数 k2: 	结果 0.906 0.989 0.311 3.147	」 批注
 所有顿(a) 送中的帧(s) 送维器 模式 模式 ● 矩形 ● 阈值 使用季度: 最小通道 1: 	\$D A (左上) 889 ▲		 嗽: 整个帧 限(当前帧,所有感兴趣区) 激 aarson 相关系数R(r): 2叠系数 R: 2叠系数 k1: 2叠系数 k2: :定位系数 m1: 	结果 0.906 0.989 0.311 3.147 0.395	· 批注
 所有顿(a) 送中的帧(s) 送维器 模式 @ 矩形 @ 阈值 使用季度: 最小通道 1: 	§① ▲(左上) 889 €		 嗽: 整个帧 限(当前帧,所有感兴趣区) 激 aarson 相关系数R(r): ····································	结果 0.906 0.989 0.311 3.147 0.395 0.292	· 批注
 所有顿(a) 送中的帧(a) 送年的帧(a) 送维器 模式 通信 使用季度: 最小通道 1: 最大通道 1: 最大通道 1: 	§① ▲ (左上) 889 ♥ 2400 ♥		 嗽: 整个帧 限(当前帧,所有感兴趣区) 激 aarson 相关系数R(r): ····································		· 批注
 所有顿(4) 送中的帧(2) 送维器 模式 ● 超形 ● 阈值 使用季度: 最小通道 1: 最大通道 1: 最小通道 2: 	§① A(左上) 889 ♥ 2400 ♥ 315 ▲	区 (新) (本) (本) (本) (本) (本) (本) (本) (本) (本) (本	 		· 批注
 所有顿(A) 送中的帧(S) 送维2 模式 ● 矩形 ● 阈值 使用季度: 最小通道 1: 最大通道 1: 最大通道 2: 	▲ (左上) 889 ÷ 2400 ÷ 315 ÷	区 (結) (本) (注) (注) (注) (注) (注) (注) (注) (注) (注) (注	 		· 批注
 所有帧 (A) 送中的帧 (S) 送442 模式 通信 使用季度: 最小通道 1: 最大通道 1: 最大通道 2: 最大通道 2: 	▲ (左上) A (左上) 889 ÷ 2400 ÷ 315 ÷ 678 ÷	×	 軟: 整个帧 限(当前帧,所有感兴趣区) 微数 earson 相关系数 R(r): :叠系数 R: :叠系数 k1: :叠系数 k2: :定位系数 m1: :定位系数 m2: :定像素: 	结果 0.906 0.989 0.311 3.147 0.395 0.292 573696 573696	批注
 所有帧 (A) 送中的帧 (S) 送442 模式 通信 使用季度: 最小通道 1: 最大通道 1: 最大通道 2: 最大通道 2: 	▲ (左上) 889 ÷ 2400 ÷ 315 ÷ 678 ÷	×		结果 0.906 0.989 0.311 3.147 0.395 0.292 573696 573696	批注

6. 待测图像如为序列图像(t、Z),可只测量选定的帧。单击"选中的帧"-选维器, 选取需测量的帧。

 如不需测量整个区域,可在"目标区域"内选择"感兴趣区"。点击右侧的 ROI 图形(方形、圆形、任意形),在图像上设置 ROI(感兴趣区),单击鼠标右键,选择"确认输入"。

一目标区域		
区域:	<mark>整个帧 ▼</mark> 整个帧 <mark>感兴趣区</mark> 通道分割	
目标区域		$\int dt dt$
区域:	- 感兴趣区 🔹 🗖 💽 🔀	- A.C.
	ROI 1	330
	4 III >>	
	1 hw	

8. "目标区域"-"通道分割"是先对需要计算共定位的两个通道设置阈值,再 形成散点图,进行共定位分析,阈值设置可以有自动、手动、自适应等方式, 如下图。

目标区域			HeLa_original
区域 :	通道分割		• ·
	GFP: 1	M	自动阈值(A)
	YFP: 2	10	手动 HSV 阈值(H),
		M.	手动阈值(M)
		ME	自适应阈值(D)
结果 (当前	帧,所有感兴趣区)		

 "模式"选项里,点击默认值后会选择为矩形,如切换为"阈值"模式,则 散点图显示如下,分为A、B、C、D是个区域,"使用季度"选项一般选择为 "B 右上",表示对处于 B 区域荧光强度的像素点进行共定位分析,具体阈值 可以通过拖动图上分界线或输入具体数据进行设置。

模式		散点图 通道 1: 通道 2:	GFP			•
 ○ 矩形 ◎ 阈值 		3155 2387	A		В	
使用李度:		1578 —	C		D	
阈值通道 1:	500 🖨	0	FP F			
阈值通道 2:	497	0	215	430	645	859

10. 分析结果自动显示在窗口右下方,其中:

吉果 (当前帧,所有感兴趣区)			1
参数	结果	批注 💆	
Pearson 相关系数 R(r):	0.926	=	
重叠系数 R:	0.998	-	
重叠系数 k1:	0.286		
重叠系数 k2:	3.478		
共定位系数 m1:	0.321		
共定位系数 m2:	0.212		
总像素量:	573696		
选定像素:	573696		
左	511936	样品[像素]	
	89.23 %	(针对所有科工	Ci,
•		P.	\sim
	9431(古(中)	3年16(0)	
明定 40月			
)
		dh'	$\overline{}$

- Pearson 相关系数:常用相关性判定系数,用于描述荧光强度变化趋势是否一致。-1<R(r) <1。R(r)越接近1,表示两个荧光通道之间荧光强度变化趋势一致,共定位的可能性越 大;反之,R(r)越接近-1,两荧光通道之间荧光强度变化相反,越不可能存在共定位信 息;若R(r)=0,表明两个荧光通道的位置信息为随机分布。
- ▶ **重叠系数 R**:常用共定位判定系数,0<R<1,越接近1共定位可能性越高。R 可排除多 种因素造成的两个通道间荧光强度不同的影响,如染料浓度、光毒性、量子效率等。
- 重叠系数 k1 和 k2: 重叠系数 R 的子参数, R²=k1×k2。k1 与通道 2 荧光强度有关, k2 与通道 1 荧光强度有关, 均为线性关系。可用于判断两通道间的荧光强度的区别。
- 共定位系数 m1 和 m2: 图像的分析区域内带有共定位信息的像素的荧光强度占总荧光强度的比例。m1 代表带有通道 2 信息的通道 1 的像素的荧光强度值,占通道 1 总荧光强度值的比例; m2 代表带有通道 1 信息的通道 2 的像素的荧光强度值,占通道 2 总荧光强度值的比例。此组参数可用于判断哪个通道在共定位中更占优势。
- 11. 点击"选项"后,可对最终输出结果做设定,全选后,最终点击确定完成共定位分析,将生成三个文件,一是含有"共定位"通道和原有通道的新图像, 二是分析结果的工作表,三是单独抽取出的"共定位"通道。

•	"]			•
	确定	取消	默认值	<u>1</u> (E) 选项	i@
		_			X
~输出~ ▼ 共 ▼ 测 ▼ 共	定位通道(图1 建结果(工作) 定位抽取(图1	象)(E) 象)(M) 象)(I)			

二、比例分析

注意: 待分析图像通常为时间序列图像, 包括至少2个荧光通道

1. 打开 Example images\Fura.tif。(Fura2 法测量钙离子浓度示例图)

2. 打开"视图〉〉工具窗口〉〉调节显示"。先点击"默认值"键,再勾选"所有 帧的直方图",最后点击"应用"。

	调节显示 百方图		? 7 X
	■ 16 位 ■ 16 位 ■ 250 ■ 250 ■ 250 ■ 250 ■ 250 ■ 250	213.98	· 最大值: ■ 439
CUS	像素总数: ○固定换算 左: 199 ●自动适配 左: 0.1 ▲%	103,301 右: 283 章 右: 0.1 章 %	
	✓ 所有帧的直方图□ 排除直方图尖峰	K	
0000	应用	默认值	Ţ

3. 打开"视图〉〉工具栏〉〉生命科学应用"。首先需要在待测图像的**背景区域**和 **待测区域**创建感兴趣区(ROI),然后点击"比例分析"图标。

打开"比例分析"窗口	,设定"比例	刘"参数:		
		比例 分子 通道: 01: Fura340 阈值:	分母 ● 02: Fura380 1 ÷ 1 1000 分母 0 ÷ 0 ROI 1 ● ROI 1	
应用于 ● 所有帧 (a) 輸出 ⑦ 图像作为新层 ⑦ 亮度剖线 ROI 1 ROI 2 ROI 3 同导出到工作簿	 ● 选中的帧 ⑤) □ ⊙ ≮ 	钙校准 (Grynkiewicz) □用户校准 Kd: Rmin: Rmax:	维选择器(D) F2(min[Ca]): 0 F2(max[Ca]): 0	
 通道:选择待分析的 阈值:用于降低窗口 比例:数值放大系数 参数示例: "阈值"为1时: 	通道,确定分子 左上方预览图值 ,越大数据越将	確 子和分母。 象背景噪声,两个 主确,建议设置为	■ 通道可单独调节 1000 或以上。	(F)
"阈值"为5时:	通道: 阈值: 比例:	分子 01: Fura340 ▼ 1 ÷	分母 02: Fura380 ▼ 1 ₹ 1000 ₹	
For 1 pr 2 for	比例 通道: 阈值: 比例:	分子 01: Fura340 5	分母 02: Fura380 ▼ 5 ↓ 1000 ↓	

4.

- 5. 需要进行比例分析的图像,扣除背景之后才可进行除法计算。三种去除背景 的方法:
 - ▶ 常数: 输入固定数值。适用于一组实验图像的分析,以保证参数一致性。
 - ▶ **感兴趣区:**选取预先在图像背景位置设定的 ROI,适用于单个实验图像。
 - 图像:选取在无标本位置拍摄的图像作为背景图像,背景图像的成像参数必须与待分析图像一致。

- 背景					
	分子		分母		
◎ 常数 (C):		0		0	
◎ 感兴趣区 (£):	ROI 1	•	ROI 1	•	(33)
					EN S
◎图像(2):		-		-	L'SC
					2

6. 如不需分析全部图像,可单击"维选择器",选取需测量的帧。

应用于 の所有帧 (&)	◎ 选中的帧 (S) 维选择器(D)	
	时间 (时间); 3 (21003.000 ms)	
	下限: 上限: 步距:	
	28P	

7. 如使用 Fura-2 进行钙离子浓度测量,可根据 Grynkiewicz 公式^[1],计算出钙 离子绝对浓度值。勾选"用户校准"对话框,使用钙离子标准浓度样品作为 参照样品,获取相应校准参数。

注意:参照样品和待测样品的图像采集参数要保持一致。

	~钙校准 (Grynki	iewicz)		
\sim	☑用户校准			
	Kd:	0	F2(min[Ca]):	0 🔺
	Rmin:	0	F2(max[Ca]):	0 🔺
	Rmax:	0 🔺		

- ➤ Kd: Fura-2 Ca²⁺合成物的离散常量。
- ▶ Rmin: 不含 Ca²⁺离子的参照样品中测量的比例值。
- ▶ Rmax: 含饱和 Ca²⁺离子浓度的参照样品中测量的比例值。
- ▶ F2(min[Ca]):不含 Ca²⁺离子的参照样品中,380 通道的强度值。
- ▶ F2(max[Ca]): 含饱和 Ca²⁺离子浓度的参照样品中, 380 通道的强度值。

8. 选择要测量的 ROI, 勾选"图像作为新层"、"亮度剖线"和"导出到工作簿",可分别获得比例图像、剖线图和数据结果。点击"比例分析"窗口右下方的"确定"按钮,获得分析结果。

输出 ☑ ☑	图像作为新层 高度副线	
	ROI 1	
	ROI 2	
	ROI 3	
	■ 导出到工作薄	

9. 比例图像将默认为原图的图层。如需单独保存,可打开"视图》)工具窗口>> 层",调出"层"窗口。然后再图层上单击右键,选择"抽取"。

10. 比例图像以色谱图形式表示,不同颜色代表比例值的高低。打开"视图",点击"标尺"、"信息印记"、"彩色条",分别可在图像上添加标尺信息、时间信息、数值信息。打开菜单栏"文件〉〉另存为"可保存为视频文件(AVI 格式)。

11. 在亮度剖线窗口下,点击"导出至 Excel"按键,可导出数据。

参考文献:

[1]: Grynkiewicz et. al. (1985), J. Biol. Chem. Vol. 260, No. 6, pp 3440-50.

MANNERSCO

三、消卷积处理

在采集明场图像和荧光图像时,由于焦面上方和下方区域的存在漫射光和衍射光,造成的焦面信息的过度曝光、畸变和模糊, 这种现象称为卷积。卷积可以通过适合的数学算法进行减弱或消除,此种处理方法称为消卷积。消卷积处理的图像结果在很大程度上取决于用于采集图像的特定参数,如物镜的数值孔径和 折射系数,荧光染料的发射峰值等。

cellSens 标配三种消卷积滤镜:二维消卷积、最近邻和 Wiener 滤镜。对于确定图像消卷积和降噪时所必需的点扩散函数和噪声函数的方式,各个消卷积滤镜在本质上有所不同,因此对图像的处理方式和类型也有所区别(表 1)。同条件下,用于计算点扩散函数的图像数据越多,结果就越精确,计算所花费的时间越长。

	X		1011.01			
汹类和滤焙	 小 珊 诘 唐	荧光图	图像	三维图像	透射	光图像
伯仓怀施境	处理还反	二维	三维	处理效果	明场	相衬
二维消卷积	快	支持	支持	差	支持	不支持
最近邻	较快	支持	支持		支持	支持
Wiener滤镜	慢	不支持	支持	好	支持	支持

表1: cellSens消卷积滤镜对比表

此外,进行消卷积的先决条件是采集图像时达到足够高的分辨率要求,这 意味着待处理图像的像素必须足够小,在处理三维图像时Z轴步进距离不宜过 高。

根据Nyquist-Shannon取样法则,"Nyquist高度"定义如下:
$$Z_{Nyquist} = \frac{\lambda/2}{n - \sqrt{n^2 - NA^2}}$$

其中:

λ: 发射波长 n: 物镜介质折射率 NA: 物镜数值孔径

根据此原则,使用"最近邻"和"Wiener滤镜"方法处理三维图像时,用于采集三维图像的Z轴步进距离"Zmax"不得大于以下公式计算得出的数值:

$$Z_{max} = 5 \times Z_{Nyquist}$$

否则,消卷积滤镜操作界面会出现如下报错信息,无法完成消卷积处理。

例如:当使用双光子物镜 XLPLN25XWMP2 (NA 1.05)在 920 nm 的激发光下采集 Z 层图像时,根据公式计算得出 "Z_{Nyquist}"约为 0.9µm,则 "Z_{max}"约为 4.5µm。这意味着如需对使用该物镜在 920nm 激发光下采集的 Z 层图像进行消卷积处理,采集图像时所设置的 Z 层步进不应大于 4.5µm。

注意:如用于安装cellSens的PC的操作系统为中文版Windows,请在PC的 "控制面板>>区域和语言>>格式"中,将"格式"设置为"英语(美语)",确 定后重启系统。否则运行消卷积处理时可能会报错。

▽ 📴 ▶ 控制面板 ▶ 所有控制面板项 ▶	
 ♥ 区域和语言 格式 位置 健盘和语言 管理 	A CON
格式(F): 英语(美国)	$\sum_{i=1}^{n}$

1. 进入 cellSens, 打开 Example images\Rose.tif。

]预览 ▼	共享 ▼ 放映幻	灯片 打印	电子邮件新建	文件夹		
	R		Ø.		0	aft.
	Clematis	Unmixing	BadTissue.tif	CellCycle.tif	CucurbitaCross Section.tif	Culex.jpg
		Sauce and			-	
1 (C:)	A States	Children 3			a all an	

2. 点击左上角图标 🛐 隐藏透射上衬。

- 4. 打开"验证消卷积通道参数"窗口。如待处理图像为使用奥林巴斯设备获取的原始图像格式(VSI、OIB、OIF、OIR等)或包含图像信息的TIF格式,软件将自动读取所需参数。如某些参数错误或缺失,请手动修改或添加。

如果无法确定参数,请输入默认参数:发射波长:540nm,球差:0,数值孔 径:0.75,折射率:空气(1.000)。只能使用"最近邻"滤镜或"Wiener滤镜"处理图像。

注意:除特殊应用外,"球差"一项通常为0。

参数确认之后,点击"确定"。

列 构	10000	L.
SII\$K1%2#E K比例(X): 0.323 ▲ μm ✔	Y 比例(Y): 0.323 🖕 µm 🖌	z 比例(z): µm ▶
显微镜通道参数		
通道	发射波长(W):	508 🚔 nm 🖌
(1) GFP	球差(S):	0 🗘 💈
	数值孔径(№):	0.4
	折射率(R): 空气	(1.000) 👻
		1
□ 将数值孔径和折射率的变更应用	至所有通道(A)	i 🔓 📙 🖆
□ 将数值孔径和折射率的变更应用 言息	至所有通道(A)	iii 🔓 📙 🔮
将数值孔径和折射率的变更应用 信息 不合适的默认值可能给消卷积筛选 带有问号的值为默认值。	至所有通道(A) 器造成负面影响。	

5. 图像参数验证完毕之后,可进行下一步消卷积处理。

(1) 二维消卷积

TTT "二维消卷积" 滤镜窗口。 TTT "二维消卷积" 流行音音音音音音音音音音音音音音音音音音音音音音音音音音音音音音音音音音音音	生命科学应用		K * x
打开"二维消卷积"滤镜窗口。 第二维消卷积》方行二维消卷积。 为行二维消卷积。 为行二维消卷积。 前子 回子 ● 3 ● 10 ● 11 ● 10 ●	DOC28 .		
カ オ ア 生 # # # # # # # # # # # # # # # # # #	·····		22 21 22 21 22
打开"二维消卷积"滤镜窗口。 <p< td=""><td></td><td></td><td>カケー维治者和</td></p<>			カケー维治者和
打开"二维消卷积" 滤镜 窗口。			1/11 1 5年7月72472
打开"二维消卷积"滤镜窗口。			
建築:二建満巻积 9 33 マ・マ・マ・マ・マ・マ・マ・マ・マ・マ・マ・マ・マ・マ・マ・マ・マ・マ・マ・)打开"二维消卷积"滤镜窗		A C C C
 ○ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	滤镜: 二维消卷积	· · · · · · · · · · · · · · · · · · ·	S Z S
应用于 ● 所有執和通道(S) 透完的執和通道(S) > 送完的執和通道(S) > 送完的執和通道(S) > ● 创建新文档作为输出(M) · · · · · · 	🖏 • 🤤 🥹 連多 •		
 ● 所有執和通道(2) ● 选定的纳和通道(5) 送组器(5) ② 创建新文档作为输出(M) 设置 算法(A): 二维(1)消卷积 一 模态(M): 宽场荧光 ● ●	应用于		
 ● 送定的帧和通道(s) 送组器(s) ● 送電新文档作为輸出(M) ● 受置 ■ 算法(A): ■ 重塩(T): ● 重量 ● 重 ● 1 <l< td=""><td>◎ 所有帧和通道(L)</td><td></td><td></td></l<>	◎ 所有帧和通道(L)		
 ✓ 创建新文档作为输出(M) 设置 算法(A):	◎ 选定的帧和通道(S)	选维器(E)	
设置 算法(A): 「建 □ 消巻积 「 構态(M): 定场荧光 ・ ・ ・ ・ ・ ・ ・ ・ ・	☑ 创建新文档作为输出(№)		
算法(A): 二维 CI 消卷积 填添(M): 宽场荧光 送代(D): 1 平滑因子 (%)(S): 0 平補重叠(T): 64 64 像素 对大图像进行平铺消卷积。可以通过增加平铺重叠未降低平 铺边界处的伪影。	い辛		
模态(M): 送代(D): 平滑因子 (%)(S): 平補重叠(T): 64 《 像素 对大图像进行平铺消卷积。可以通过增加平铺重叠来降低平 铺边界处的伪影。	^{夜五} 算法(A):	二维 CI 消卷积	
送代(1): 平滑因子 (%)(5): 平補重叠(1): 64 ● 像素 对大图像进行平铺消卷积。可以通过增加平铺重叠未降低平 铺边界处的伪影。	模态(M):		
平滑因子 (%)(5): 平補重叠(T): 64 ● 像素 对大图像进行平浦消卷积。可以通过增加平铺重叠来降低平 铺边界处的伪影。 确定 取消 应用 (a) 默认值 (0)	迭代(I):		1
平補重叠(T): 64 ● 像素 对大图像进行平铺消卷积。可以通过增加平補重叠来降低平 铺边界处的伪影。 确定 取消 应用 (a) 默认值 (2)	平滑因子 (%)(S):	·	0
对大图像进行平铺消卷积。可以通过增加平铺重叠来降低平 铺边界处的伪影。 确定 取消 应用 (a) 默认值 (2)	平铺重叠(T):	64	
(補边界处的伪影)。 确定 取消 应用 (a) 默认值 (2)		对大图像进行平铺消卷积。可以通过增加平铺	重叠来降低平
确定 取消 应用 (4) 默认值 (2)		铺边界处的伪影。	
<u>确定</u> 取消 应用 (a) 默认值 (2)			
确定 取消 应用 (a) 默认值 (2) 			
· · · · · · · · · · · · · · · · · · ·			
			默认值 (型)
点击左上角图标,可选择是否显示预览图像。	点击左上角图标, 可选择是	否显示预览图像。	

1) 打开"视图>> 工具栏>> 生命科学应用",点击"二维消卷积"图标。

4) 在下方设置窗口,设置二维消卷积处理参数:

设置	
算法(<u>A</u>):	
模态():	宽场荧光 ▼
迭代(1):	1
平滑因子 (%)(S):	
平铺重叠(1):	64 ▼ 像素
	对大图像进行平铺消卷积。可以通过增加平铺重叠来降低平 铺边界处的伪影。

- **算法:** 默认"二维 CI 消卷积"算法,如使用"二维去光晕"算法,需配合"平滑 因子"参数使用。如注重荧光亮度信息,请采用"二维 CI 消卷积"算法;如注重 荧光表达位置信息,请选用"二维去光晕"算法。
- ▶ 模态:如为荧光图像,选择"宽场荧光";如为明场图像,选择"明场透射光"。
- > 迭代: 算法应用次数, 数字越大应用次数越多。默认为1。
- **平滑因子:**调整滑动游标可使处理后的图像变得平滑或锐化。数值为正,趋向平滑; 数值为负,趋向锐化。如使用"二维 CI 消卷积"算法,此项应为 0。
- **平铺重叠:**如所处理的图像过大(像素大于 1000x1000),需对图像进行分割处理后,再自动拼接成大图。此参数为分割图之间的重叠区域,用于消除边界伪影。数值越大,图像处理效果越好,所需时间越长。
- 5) 根据预览图像设置参数。如对结果满意,可点击窗口下方的"确定"按钮, 得到二维消卷积处理图像。
- (2) 最近邻

1) 打开视图>> 工具栏>> 生命科学应用,点击"最近邻"图标。

生命科学应用	· · · · · · · · · · · · · · · · · · ·
□○☆28·102	
	计算邻域滤镜

2) 打开"最近邻"滤镜窗口。此滤镜无法预览图像处理结果。

	消卷积:最近邻				₹ X	
	 □・ (○ (<th>ž •</th><th>选维器(E)</th><th></th><th></th><th></th>	ž •	选维器(E)			
	设置 显微镜: □明场度射 ① □相时② 滤镜: 算法(A): 除貓因子(H):	无近邻		0	¥ 85 👗 %	~
3) 在下方设	置窗口,设置。	"最近邻"	<u>₩</u> 1000000000000000000000000000000000000	_{消 应用 (a})	默认值 @)	LE CE
,	设置 显微镜: 回明场透射 (I) 回相时 (P) 速镜: 算法(A): 除靏因子(H):	无近邻		0	- 85 • %	>
			确定 关	闭 应用 (4)	默认值 @)	

- ▶ 显微镜:默认荧光图像。如为明场或相衬图像,请在对话框中勾选。
- **算法:**包括"无近邻"和"最近邻"两种。如待处理图像为单帧图像,两种算法无区别; 如待处理图像为序列图像(t、Z)时,"无近邻"算法要快于"最近邻"算法。因"最近 邻"滤镜无法显示预览图像,为节省时间,处理序列图像时可先使用"无近邻"算法调 整"除霾因子"参数,获得理想结果时再使用"最近邻"算法进一步优化。如待处理图 像的 Z 层较薄(如 TIRF 图像),可直接使用"最近邻"算法。
- 除霾因子:通过调节"除霾因子"参数,排除图像中噪声函数的干扰。如图像通道参数 经过验证,默认值 85%通常可获得较好的处理效果。如图像通道参数未知,则需要调整"除霾因子"直到取得最佳效果。

4) 点击窗口下方的"确定"按钮可察看图像处理结果,得到最近邻消卷积处理图像。

(3) Wiener 滤镜

注意:只能处理带有Z层信息的图像。

1) 打开"视图>> 工具栏>> 生命科学应用", 点击"Wiener 滤镜"图标。

2) 打开"Wiener 滤镜"滤镜窗口。此滤镜无法预览图像处理结果。

	消卷积: Wiener 滤镜	10. 10			8 23
	🗛 - 🔍 🗟 👰 🙀 更多	•			
	┃ ○应用于				
	 ◎ 所有通道(L) 				
	○ 选定的通道(S)		选维器(目)	
	☑ 创建新文档作为输出(Ⅳ)				
					i ti
	□相衬 (£)				i i i i i i i i i i i i i i i i i i i
					D
	子体积叠加Ⅳ:	10	- 像素		
	┃				
在下	方设置窗口,设置	确定 "Wiener 滤镜	取消 应用	iَ濃 ④E	人 <u>值 @)</u> .::
្រះ			2 3.		
	显微镜:				
	— ———————————————————————————————————				
	□相村(2)				
	滤镜: 子休和桑加(V): 1	0 @表			
	滤镜: 子体积叠加(V): 1 2 背景消隐 (B)	0 🛉 像素			
	滤镜: 子体积叠加(V): 1 □【音景消隐 ⑫)	10 🔷 像素			

- ▶ **显微镜:**默认荧光图像。如为明场或相衬图像,请在对话框中选择。
- **子体积叠加:**如待处理的图像过大,可用内存无法同时处理整幅图像,软件将原始图像分割成多个子图像处理,处理完毕后自动拼接。此参数用于设置子图像之间的重叠 区域大小,数值越大(最高 512 像素),图像组合效果越好,处理时间越慢。
- > **背景消隐:**如待处理图像背景噪音过高,将会影响处理结果。因此需勾选此项。
- 4) 点击"确定"可察看图像处理结果,得到 Wiener 消卷积处理图像。

5) 通常消卷积处理需要一定时间,处理进度在软件窗口左下角显示。点击取消按钮可随时中止处理。

取消	

6. 消卷积处理后结果对比,三种滤镜均采用默认参数。下图展示图像为示例图 像序列 9 的局部。

Wiener 滤镜

四、记波器(Kymograph)

注意: 待测图像必需为时间序列图像。如待测图像不是使用奥林巴 斯设备获取的原始图像格式(VSI、OIB、OIF、OIR 等)或包含图像信息 的TIF 格式,测量前需添加或校准图像参数(时间信息、标尺信息 等)。

记波器用于创建时间序列图像中待测对象的运动轨迹,生成记波图,将时间序列图像进行二维化展示,且以此测量待测对象的运动速度等数据。在待测图像中可定义一个或多个轨迹,用于指定待测对象的运动路线,轨迹的宽度可以自定义。通过计算轨迹线条的亮度值(彩色图像)或灰度值(荧光图像),得到待测对象的记波图。

如下图,记波图显示的内容为待测对象上所定义轨迹位置的亮度值,水平轴(X)代表待测对象沿轨迹的运动距离,垂直轴(Y)代表时间(t)。

在时间点 t=1,待测对象位于轨迹起点。 在时间点 t=12,其他对象进入了图像。 在时间点 t=33,待测对象移出图像。 在时间点 t=40 之后,所定义轨迹上没有待测对象可见。

1. 打开 Example images\ParameciumTimeSeries.tif。

2. 打开"视图〉〉工具窗口〉〉记波器",点击打开记波器窗口。

3. 点击窗口左上方"创建轨迹"图标。

记波器		?	# >	×
20	8 # So		;	Ŧ
*	创建轨迹			
	的建心波播动机迹			
<u>.</u>	ור			

3.1 首先进行"轨迹定义"。本示例图为明场图像,因此"视图"应选择"最小亮度投影"。

	创建轨迹	? <mark>×</mark>
L	轨迹定义	
Jun 1	名称(N):	Test1
9	颜色(C):	•
	视图(V):	最小亮度投影 ▼ 最大亮度投影
	筛选抽取范围 维度轴(D):	最小高度投影 平均亮度投影 活动视图
	7世)又相(ワ)・	(;

名称: 输入新轨迹的名称,将在定义轨迹的图像序列的图像窗口中显示。该 轨迹计算的记波图将命名为 <图像序列的名称>_<轨迹的名称>。

注意: 必需输入名称才能定义新轨迹,确定按钮才可用。

- ▶ 颜色:为轨迹选择一个颜色,用于在图像序列上显示轨迹。该轨迹对应的记波 图在文档组中的标题具有相同颜色。
- ▶ 视图:根据待测对象在图像上的移动位置的投影,定义其运动轨迹。
 - ✓ 最大亮度投影:投影图像包含所有单幅图像的最亮像素,在暗背景上移动的亮对象使用该投影方法(如荧光图像)。
 - ✓ 最小亮度投影:投影图像包含所有单幅图像的最暗像素,在亮背景上移动的暗对象使用该投影方法(如明场图像)。
 - ✓ 平均亮度投影:对于投影图像,将对所有单幅图像的亮度进行平均,在对 象并不随时间发生较大变化且各幅图像具有大量图像噪音时使用该投影 方法。
 - ✓ 活动视图:在定义轨迹时,在图像窗口中不显示待测对象移动位置投影。
- 3.2 如待测对象仅在部分图像中可见,则不需要测量全部图像,可在"筛选 抽取范围"中选取含有待测对象的图像帧。

筛选抽取范围 维度轴(D):	时间	
● 使用所有帧(U)	◎ 使用选	定帧(M)
第一帧(F):	最后—帧(L): 50	步距(I):
	5	70

3.3 如图像中的待测对象较大或宽度具有分析意义,可在"滤镜参数"中定义 轨迹的相关参数。

使谙参数		
平均值 (A):	7	
		. (=
拉长因子(E):	2	☐ 17

平均值:用于定义轨迹具有的宽度。如下图箭头标记处,显示了用于定义对象宽度的7个像素,并将这些像素亮度的平均值用于计算记波图。红色粗线为定义的轨迹,细线指示轨迹的实际宽度。此项操作用于确定待测对象运动轨迹的中心位置。

▶ 拉长因子: 输入要在记波图中复制行的次数。例如, 输入值 2 可将记波图的 Y 轴拉 长至 2 倍, 每个帧的值也相应在记波图中显示两次。 定义轨迹参数之后,点击窗口的"定义轨迹折线"图标,进入待测对象运 动轨迹定义状态,此时鼠标只能在图像窗口中活动。

注意:拍摄时间序列图像时,设置适合的间隔时间是准确获取待测对象运动速度的关键。确保待测对象在相邻两帧之间的位置存在重叠区域,才能 准确的测量出待测对象的运动速度。

 根据图像窗口中待测对象的投影,通过鼠标左键单击,描绘出需测量的运 动轨迹,单击鼠标右键单击退出运动轨迹定义状态。如果对定义的轨迹需 要进行调整修改,可以左键点击需要修改的位点,然后按住左键将位点拖 至预期位置。

6. 定义轨迹之后,如需修改调整,可点击"编辑轨迹"按钮。

7. 如轨迹定义无误,点击"计算记波图"按钮,生成该轨迹的记波图。

8. 记波图将自动排列在原始图像的右侧,可以单独保存。如需获取待测对象 的运动速度等数据,需要对记波图进行测量。

9. 打开"测量>> 测量和感兴趣窗口"。

S OLYMPUS cellSens Dimension	-844-1
文件(F) 编辑(E) 视图(V) 采集(A) 图像(I) 运算(P) 测量(M) 工具(T) 窗口(W) 帮助(H)
े 🔁 र 📂 र 🔚 🔒 🖓 💁 🔺 🖣 🛍 🎭 🔊 र	
记波器 ? ♀ × ↓ ▲ ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	测量和感兴趣区工具栏(B)
	保存测量和感兴趣区(S)
	2 法 载入测量和感兴趣区(L)
11.122 < 输入轨迹复称 > 2	► 原点(O)
Test1	• 点坐标(P)
	✓ 任意线段(A)

10. 打开"测量和感兴趣"窗口后,点击"选定测量参数"图标。

测量和感兴	海区										6	? 7 X
💝 😤	⊱ 🗣	• ↓ •	• Z	‡ ×	2 🖉 🗛 .	∆ I □ ♦ C) O O 🖾 @	3 🖏 🛃 💉 🖡	a a 4 5	1 💦 🖸	r	÷
类型	•	名称		X 坐标	Y 坐标	长度	夹角	面积	周长		选定测量参数	_
										47.2	选定针对每个测量对象	计算的测量
												-
计数				-	0	0	0	0	0	0	0	-
最小值				-	-	-	-	-	-	-	-	_
最大值				-	-	-	-	-	-	-	-	-
平均值				-	-	-	-	-	-	-	-	-
•												•

11. 选取需要测量的参数,如"平均速度",参数的具体定义说明可参考右侧的"参数说明栏"。选取参数后,点击"添加"平均速度""按钮添加测量参数,然后点击"确定"。

选定测量参数	2	
 	参数说明栏	1
測量 I× X 终点 I× X 终点 I× Y 终点 I× Y 经点 I× Y 起点 I× Y U×	对象类型 ▲ ▲ ▲ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	
 ☆ 当前对象位移 (空间) ☆ 当前速度 ☆ 当前速度 ☞ 片段 ID ◆ ◆ ◆ ◆ ◆ ◆ 	 记波图线条 □ 测量凸形外壳(C) □ 测量方向(0) 添加 "平均速度" 	
测量 [≍, X 坐标 [×, Y 坐标 ↓ [×] K度	对象类型 点坐标 点坐标 线	

12. 添加参数后,点击"记波图折线"按钮,在右侧记波器图像结果中,沿着 轨迹画出折线图,单击鼠标右键结束,测量记波图。

测量和感	兴趣区							6		? 7 ×
💝 😤	% ₿ ‡	- × 4	🔨 🖄 🎸	∆ . ↓ □	$\diamond \bigcirc \bigcirc \oslash$	🖾 🖉 🖉	Hat No) 🗈 🖻 🤗 🖀		Ŧ
	▲ 名称	X 坐标	Y 坐标	长度	夹角	面积	R H H H H H H H H H H H H H H H H H H	平均值 (友度值) 己波图折线 则量记波图上的折线	平均速度	× E
		-	0	0	0	0	0	0	0	0
1		-	-	-	-	-	-	-	-	- =
1		-	-	-	-	-	-	-	-	-
ļ		-	-	-	-	-	-	-	-	
•										

13. 在记波图的轨迹上,选取需测量的区域段,每段之间的待测对象平均速度 数据将直接在记波图上显示。

14. 测量结果也将显示在"测量和感兴趣区"窗口,点击"将活动文档导出至 Excel"按钮,可将数据导出为 Excel 文件。

测量和感兴趣区							_	? 7 X
😽 😤 🐂 🖫	⊧ I* • ¥	* ‡	2 🖉 🗛 🐇		002002	3 ***	2 & E	• 🖻 🛠 🖀 🛓
类型 ▲	名称	长度	面积	周长	平均值 (灰度值)	平均速度	👔 将活动文档导出至 Excel
~~记波图折线			-	-	-	-	276.15 µm/s	将活动文档的所有测量结果导出至 Exce
			-	-	-	-	204.45 µm/s 279.99 µm/s	
							215155 [-
计数		-	0	0	0	0	3	
最小值		-	-	-	-	-	264.43 µm/s	=
最大值		-	-	-	-	-	279.99 µm/s	
平均值		-	-	-	-	-	273.52 μm/s	-
			SE					

五、对象计数(手动)

使用对象计数工具窗口可手动计算待测图像上的待测对象的数量。为此,只 需单击图像上的待测对象即可。不同类型的待测对象可分别定义类别,并且可以 直接在计数过程中为待测对象进行类别分配。

1. 打开 Example images\ CellCycle.tif。

🕞 🕞 🗸 🚺 🕨 Example image	es 🕨	21				· + 搜索	Example images	Q
组织 ▼ 📓 预览 ▼ 共享	【▼ 放映幻灯片	打印	电子邮件	新建	建文件夹		1	• 🔳 🔞
 ☆ 收藏夹 □ 库 □ 图片 □ 文档 □ 视频 	Clematis	Unmixing	Ac	ceptor nple.ti	BadTissue.tif	CellC	rcle.tif	bitaCross ction.tif
2. 打开"视图》》	L 具 窗 □ CUVMPUS cellsens 文件(F) 編編(E) 初度 マ(F) 第一日 (F) マ (F) マ(F) 第一日 (F) マ (F) マ(F) 第一日 (F) マ (F) ロ(F) マ (F) ロ(F) マ (F)	 	図像(1) 运算(P) 図像(1) 运算(P) (1) 近日 (1) 近日		広击打开次 (M) I具(T) 窗口(W) 報載 (M) I具(T) 窗口(W) 報載 (A CAP 注朝) (RF 面形) (RF 面形) (RF 调节 地域 (M) 医酸 (M)	t象计数 (H) 10x 1 20x 10x 1 20x Alt+Enter Ctrl+Alt+D	文窗口。	
Saller -	1024x 800 立用于实时以. 长宽比(C): で 電 画家	•			田脚密度检查 目定义功能 1: Well-Stage-Navig 已波器 明节显示 无维器	gation-Hor	I	

3. 点击"创建类别",在跳出的窗口中输入类别名称,选取对应颜色。可创建多 个类别。

对象计数		
🛎 🖀 🚺 📶 😁 🗠 🎋 🎞 🛄 🗅 🖻 🖻	创建美别 ? ×	
类别 创建文别 创建对象计数的新美剧 □ 7 对象计数文档 <輸入头 の+= ₩1 *	名称(N): <輸入类别名称> 颜色(C):	
	确定 取消	

4. 如需更改调整已创建的类别,可点击"编辑类别"进行修改。

5. 点击"数字标线"按钮,可为图像添加辅助线。

 点击"对象计数"按钮,在图像上点击符合标准的待测对象,进行计数。计数完成或者需要调整计数点时,再次点击"对象计数"按钮,或按键盘的"Esc" 键退出计数模式。

対象计数		a 	*
类别 ▼ <輸入类别名称> ▼ 高	- → 対象计数 使用鼠标激活或取消激活对象计数		* * * ** ** ****

7. 如需调整计数点,可点击"选择对象"按钮,选取需删除的计数点。单击鼠标右键,选择"删除选定对象",或者单击键盘"Delete"按钮,即可删除。

8. 计数结果在"对象计数窗口"的右侧显示,可以列表和柱状图的形式。点击 "将分类结果导出至 Excel 表格"按钮,可导出计测结果。

六、宏管理器(Macro Manager)

宏(Macro)功能是指将重复使用的工作流程自动化的功能,比如对批量图像 使用相同的方法进行处理、格式转换、自动分析等等。进行宏编辑无需掌握任何 编程知识,只需在"宏管理器"中执行整个工作程序,所执行的操作和使用的命 令将被自动录制。当录制完成后,一个可以随时再次运行的宏也相应的创建完成。

1. 打开 Example images\Clematis\Clematis01.tif。

۲ 洗維器

ε

🙆 🗀 🙀 🗉 廊

3. 点击窗口左上方"创建宏"图标。

4. 输入新建宏的名字和	□描述,方便之后的调用。 新建宏 2 33 名称(\\): 则试 屏幕提示描述(S): 操作示例 确定 取消

- 5. 点击"确定"按钮后,宏管理器将自动开始录制对图像处理的步骤。这里示 例为改变图像的模式,并进行滤镜处理。
 - 5.1 首先将图像改为灰度模式:打开"图像>> 模式",点击"灰度",即可将此操作步骤 添加到"宏管理器"。

5.2 然后进行 Sobel 滤镜处理: 打开"运算〉〉边缘探测滤镜",点击"Sobel 滤镜",在随 后跳出的滤镜窗口下点击"确定"。即可将此滤镜操作步骤添加到"宏管理器"。

7. 如录制结束,点击"停止宏运行或记录"按钮完成。录制内容会自动存储在

- T

🧹 🖪 Sobel 濾镜

<u>e</u>

宏管理器	? 7 X
🗢 🖬 🔳 > 🖉	' 🖹 🗮 • 🗙 🕒 📮
🦯 🙎 测试 🔳 停止	宏运行或记录
	宏录制或执行
✓ G Sobel 濾	ŧ 💣

🗸 🖪 Sobel 濾镜

宏管理器中,下次使用时直接调用即可。

 点击"运行宏"按钮,可自动运行宏包含的全部操作步骤; 点击"单步运行宏"按钮,每点击一次,按顺序运行一次宏包含的操作步骤。

9. 如需对一组图像进行批量处理,点击"切换批处理模式"按钮。此时"单步运行宏"已不可用,点击"运行宏"按钮,进行批量宏处理。

宏管理器 ?	д
●ⅡⅡ → 🧭 🖹 🕇 • 🗙	📴 🗸 🚽
🤱 测试:	🕒 切換批处理模式
	在正常和批处理宏执行之间切换
🗸 🔁 灰度	
✓ 👍 Sobel 濾镜	

9.1 在"定义宏批处理"窗口下,首先选取要进行批处理的图像文件,软件提供多种选 取方式,可选择子文件夹和文件夹中特定格式的文件,选择完成后,点击"下一步"。

	定义宏批处理: 输入 (1/3 步)	22
3	输入 (I): 目录中的文档 目录中的文档 教現库搜索 所法位置列表条目 文件系统中的文档	Sec
	资产的数据库吃家 送走的数据库吃家 》 说览(B) 包括子文件夹 (E) ① 仅选定 (Q): Adobe Photoshop (*.psd) ▼	
	文档 D:(学习\to chenda\Example images\Acceptor sample.tif D:(学习\to chenda\Example images\BadTissue.tif D:(学习\to chenda\Example images\CellCycle.tif D:(学习\to chenda\Example images\CucurbitaCrossSection.tif D:(学习\to chenda\Example images\Culex.jpg D:(学习\to chenda\Example images\Donor sample.tif D:(学习\to chenda\Example images\FRAP_Sample.tif D:(学习\to chenda\Example images\Frav.tif D:(学习\to chenda\Example images\Frav.tif D:(学习\to chenda\Example images\Frav.tif D:(学习\to chenda\Example images\Example.tif D:(学习\to chenda\Example images\Lavender.tif D:(学习\to chenda\Example images\Lavender.tif	
	D.(学习)to chenda'Example images'UleanderLeaf.tif D:(学习)to chenda'Example images'Ovarium.tif D:(学习)to chenda'Example images'ParameciumTimeSeries.tif D:(学习)to chenda'Example images'PeroxysomOrganelles.tif 	
7	< 上一歩 (3) 下一步 (3) > 取消	

9.2 在"目标位置"中,如选择"未保存",宏批处理后的图像将全部在 cellSens 中打开, 需手动保存;选择"文件系统",宏批处理后的图像将自动保存在定义的位置,建议 使用。也可以处理后的图像保存在数据库中。

定义宏批处理: 輸出 (2/3 步)	? ×
目标位置 @): 文件系统 数据库 未保存 文件系统	▲ 在下面选择要保存的文件类型、存储位

- 34 -

9.3 选择"文件系统"后,需要定义宏批处理后的所生成的图像、图表、工作簿的保存 路径和文件类型,如无图表或工作簿可不勾选。然后点击"下一步"。

D:\WorkData	浏览(B)	命名(A)		
文件类型				
☑将图像另存为:				
标记图像文件格式 (*.tif)	▼ 选项(O)…			
☑将图表另存或导出为:				
Olympus 图表 (*.oct)	•			
☑将工作簿保存或导出为:				
Olympus 工作簿 (*.owb)	•			ß
				Ċ.Ś.
127 如果名称已存在则改写文件	(W)			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
▼关闭文档 ©)			1	
				S
)
			\sim	
유유년적 ·				
TWOL: D:\WorkData\<名称>.tif D:\WorkData\<名称>.oct D:\WorkData\<名称>.owb				
		K		
		1 1		

9.4 最后确认输入文件内容和输出文件的保存位置,如无误,点击"启动"。运行宏批处 理。

定义宏批处理: 汇总 (3/3 步)
单击"启动"以执行批处理。 这将保存您的设置并为每个输入文档执行宏。将根据设置处理结果文档。
输入完义: 输入: 目录中的文档 C:\Users\onD00455\Desktop\Example images\Clematis\Clematis01.tif C:\Users\onD00455\Desktop\Example images\Clematis\Clematis02.tif C:\Users\onD00455\Desktop\Example images\Clematis\Clematis04.tif C:\Users\onD00455\Desktop\Example images\Clematis\Clematis04.tif
目标位置:文件系统 预览: D:\WorkData\<名称>.tif D:\WorkData\<名称>.ovt D:\WorkData\<名称>.ovb

10. 启动后,待处理图像将进行宏批处理。进度条和剩余时间在窗口下端显示。

11. 结束后点击"关闭"按钮。如第 9.2 步"目标位置"选择了"文件系统",所有批处理的图像将保存在定义的保存路径中。

	Cons.		Anna -	
	Clematis01.tif	Clematis02.tif	Clematis03.tif	Clematis04.tif
	Clematis05.tif	Clematis06.tif	Clematis07.tif	Clematis08.tif
		X		
\in	Clematis09.tif	Clematis10.tif	Clematis11.tif	Clematis12.tif

NOTE

And the second s

升级说明:

1. 对应 cellSens 2.2 版本,修改了共定位分析的相应操作界面。

Anne where the state of the sta

编译:	杨斯雷			
审校:	谢瑞东、	高莹莹、	陈达、	张宇飞
定稿:	杨斯雷、	齐京京		